If the objective is high speed cruise and carrying lots of bombs then perhaps an updated F-16XL cranked delta. The F-16XL's disadvantage was less maneuverability.
For a decade and a half, many fighter tacticians have stressed the paramount importance of being able to sustain a high turn rate at high Gs. The rationale was that with such a capability, enemy aircraft that cannot equal or better the sustained turn rate at high Gs could not get off a killing shot with guns or missiles.
With developments in missiles that can engage at all aspects, and as a result of having evaluated Israeli successes in combat, the tacticians are now leaning toward the driving need for quick, high-G turns to get a “first-shot, quick-kill” capability before the adversary is able to launch his missiles.
This the F-16XL can do. Harry Hillaker says it can attain five Gs in 0.8 seconds, on the way to nine Gs in just a bit more time. That’s half the time required for the F-16A, which in turn is less than half the time required for the F-4. The speed loss to achieve five Gs is likewise half that of the F-16A.
All of these apparent miracles seem to violate the laws of aerodynamics by achieving greater range, payload, maneuverability, and survivability. Instead, they are achieved by inspired design, much wind-tunnel testing of shapes, exploitation of advanced technologies, and freedom from the normal contract constraints.
The inspired design mates a “cranked-arrow” wing to a fifty-six inch longer fuselage. The cranked-arrow design retains the advantages of delta wings for high-speed flight, but overcomes all of the disadvantages by having its aft portion less highly swept than the forward section. It thus retains excellent low-speed characteristics and minimizes the trim drag penalties of a tailless delta.
Although the wing area is more than double that of the standard F-16 (633square feet vs. 300 square feet), the drag is actually reduced. The skin friction drag that is a function of the increased wetted (skin surface) area is increased, but the other components of drag (wave, interference, and trim) that are a function of the configuration shape and arrangement are lower so that the “clean airplane” drag is slightly lower during level flight, and forty percent lower when bombs and missiles are added. And although the thrust-to-weight (T/W) ratio is lower due to the increased weight, the excess thrust is greater because the drag is lower – and excess thrust is what counts.
The larger yet more efficient wing provides a larger area for external stores carriage. At the same time, the wing’s internal volume and the lengthened fuselage enable the XL to carry more than eighty percent more fuel internally. That permits an advantageous tradeoff between weapons carried and external fuel tanks.
Through cooperation with NASA, more than 3,600 hours of wind-tunnel testing refined the shapes that Harry Hillaker and his designers conceived. More than 150 shapes were tried, with the optimum design now flying on the two aircraft at Edwards.
As an additional technology, the XL’s wing skins are composed of an advanced graphite composite material that has a better strength-to-weight ratio than aluminum, is easier to form to the compound wing contours, and has higher stiffness to reduce undesirable flexibility effects.
Two features of the basic F-16 played an important part in readily accommodating what appears to be a drastic change in configuration. First, the modular construction of the airframe allows major component changes with local modification only. And second, the redundant quadriplex fly-by-wire flight control system has the inherent ability (one of its strongest features) to accommodate configuration changes readily.
The modular component construction permitted the addition of a twenty-six-inch “plug” between the center and aft fuselage components to carry the additional wing loads, and a thirty-inch “plug” between the cockpit and inlet component to accommodate the increased wing chord (length). Each “plug” is added at an existing manufacturing splice or mating point.
Finally, since the design and fabrication was entirely a company project, the design team was not constrained by irrelevant requirements and specifications. As Harry Hillaker puts it: “Every piece on this aircraft earned its way on.” That design freedom kept the team concentrating on achieving “performance objectives” in this derivative of the F-16.
Late in 1980, General Dynamics approached the Air Force’s Aeronautical Systems Division for cooperation and support in flight-testing the design. USAF supplied the two test aircraft to be modified to the F-16XL configuration, two turbofan engines, a new two-place cockpit, and funding for the flight-testing. A Pratt & Whitney F100 engine powers the single-seat F-16XL; its sister two-place aircraft is powered by a General Electric F110 derivative fighter engine.
This dual role fighter candidate has one foot in the present ad one foot in the future.
www.airandspaceforces.com
ying two 600-gallon external fuel tanks.17Shortly after the conclusion of Phase I testing, General Dynamics wasquoted in the aviation press as saying that the F-16XL had demonstratedmaneuverability that was better than expected, with its cranked-arrow wingplanform displaying none of the unfavorable drag characteristics of the tailless delta. At the same time, and perhaps defensively, GD claimed that therewas no discernible difference in performance between the Pratt & WhitneyF100–powered aircraft and the aircraft powered by the General Electric F110engine, and it added that extra thrust was not needed.18 However, the AirForce reported
that the F-16XL was purposely designed to have improved instantaneous turn rates rather than high sustained maneuvering capability. 19 In this regard, the F-16XL demonstrated an instantaneous turn rate that was about 30 percent higher than that of the standard F-16 in the air-to-ground configuration, with both aircraft carrying the same payload at 30,000 feet.
At the same altitude, the F-16XL’s instantaneous turn rate was 14 percent better than that of the standard F-16 when both aircraft were carrying their full air-to-air missile payload. In contrast,
there was a significant loss of sustained turn capability compared to that of the F-16. For example, at a Mach numberof 0.9 at 30,000 feet, the F-16XL’s sustained turn rate was 30 percent lower than that of the F-16 in both the air-to-air and the air-to-ground configurations. This poor sustained turning performance compared to the F-16 was identified by the Air Force as resulting from the high induced drag of the F-16XL’scranked-arrow wing and its relatively low thrust-to-weight ratio. Commenting on this specific issue, Maj. Patrick K. Talty, the former deputy for engineering within the F-16E Combined Test Force at the Air Force Flight Test Center,later reported the following
Although the flight performance envelope was not completely explored, it seems probably that the Lavi would have been at least the equal of the F-16C/D in most departments, and possible even superior in some.
It had been calculated that the Lavi could reef into a turn a full half second quicker than the F-16, simply because a conventional tailed fighter suffers a slight delay while the tailplane takes up a download, whereas with a canard fighter reaction is instantaneous. By the same token
, pointability of canard fighters is quicker and more precise. Where the Lavi might really have scored heavily was in supersonic maneuverability, basically due to the lower wave drag of a canard delta.
Thrust-to-weight ratio: 0.94 at normal take-off weight. Wing loading: 302 kg/m2 at normal take-off weight and 523 kg/m2 at maximum take-off weight.
Sustained air turning rate: 13.2o/s at Mach 0.8 at 4,757 m. Maximum air turning rate: 24.3o/s at Mach 0.8 at 4,757 m. Take-off distance: 305 m at maximum take-off weight. G limit: + 9 g.
Encyclopedia of Jewish and Israeli history, politics and culture, with biographies, statistics, articles and documents on topics from anti-Semitism to Zionism.
www.jewishvirtuallibrary.org
On this basis
, we might expect the unstable Lavi, with its much lower wing loading and unstable aerodynamics to have great ITR, while the Tigershark ITR would be reduced compared to the Lavi and the F-16. Both the F-16 and the Tigershark benefit from wing leading edge strakes, and, notably, all aircraft claim to be able to operate up to a 9g structural limit. The real issue here is for how much of the flight envelope is this capability available, and how much energy will be lost in such a manoeuvre.
On sustained turn rate, the trade-offs are more complex, but it is apparent that the F-16/79 is likely to be handicapped by its lower thrust to weight ratio. Note that the thrust used is a short-term power plus mode. At normal thrust, the F-16/79 has a thrust to weight ratio of around 0.75. The low aspect ratio of the Lavi, and its slightly lower thrust-to-weight ratio are likely to reduce STR, but the much lower wing loading will counter this to some extent.
Thrust to weight ratio is particularly important, as a high thrust to weight ratio will enable high energy manoeuvrability. This will allow a turning fight to be readily taken into the vertical, and, in BVR combat will allow rapid cycling between engagement, missile release, disengagement, acceleration and re-engagement. Of these four aircraft, the F-16C has a definite advantage in energy manoeuvrability, and the F-16/79 will be at a disadvantage.
The Table below presents some limited data for the four aircraft. The data reflect what could be gleaned from the web, and is not fully defined, in that aircraft configuration, altitude and Mach number are not generally available to fully define the quoted figures. As all aircraft claim to be capable of generating 9g, the small variation in ITR figures probably reflects differing altitude or speed conditions, although the higher value for the Lavi may reflect both its low wing loading and its unstable aerodynamics. The ITR for the F-16/79 is based on the assumption that the aircraft can reach the same CLmax, and has the same structural limits as the F-16. The F-16/79 would lose energy much faster than the F-16 due to its much lower thrust.
It is notable that the higher thrust to weight ratio of the F-16C gives a significant benefit in Sustained Turn Rate – the figure noted comes from a dataset that suggests the F-16 is structurally limited in STR as well as ITR. The slightly higher ITR figure is at a lower speed, where the aircraft is lift-limited rather than g-limited. The impact of the low thrust of the F-16/79 is evident in comparison of its sustained turn performance with the F-16, and the F-20 Tigershark achieves similar STR, the higher thrust to weight ratio somewhat offsetting its higher wing loading. It should not be forgotten that the Lavi was really well ahead of its time in aerodynamics, control system and mission system design. Its nearest equivalent would probably be the Gripen, which made its first flight in December 1988, some 2 years after the Lavi.
This is a story about US foreign policy and its intersection with aerospace. The relevant period is the ‘80s, but the interweaving of US industrial, trade, defence and foreign policy settings can b…
hushkit.net