https://en.wikipedia.org/wiki/Republic_XF-103
Wikipedia says that....
"Wings and control surfaces
All of the control surfaces were pure delta wings. The main wing was swept at 55 degrees, and could be rotated around the spar to provide variable incidence. For takeoff and landing, the wing was tilted upwards to increase the angle of attack while keeping the fuselage nearly horizontal. The length of the fuselage made it difficult to achieve the same end by tilting the entire aircraft upwards, which would have required a very long extension on the landing gear. The system also allowed the fuselage to fly flat to the airflow at various speeds, setting the trim angle independent of the aircraft as a whole. This decreased trim drag, and thereby improved range.(Is this true? Same as XF-91?)
The wing was split at about two-thirds of the span. The portion outside of this line able to rotate independently of the rest of the wing. These movable portions acted as large ailerons, or as Republic called them, tiperons. In order to keep the surface area in front and behind the pivot point somewhat similar, the split line was closer to the fuselage in front of the pivot. Large conventional flaps ran from the fuselage to the tiperons. Hard points for drop tanks were available at about 1⁄3 of the way out from the wing root.
The horizontal stabilizers were seemingly undersized, and mounted below the line of the wing. The larger vertical fin was supplemented by a ventral fin for high-speed stability. This fin folded to the right, as seen from behind, during takeoff and landing to avoid hitting the ground. Two petal-style air brakes were mounted directly behind the horizontal surfaces, opening out and up at about a 45° angle into the gap between the horizontal and vertical surfaces. A provision for a braking parachute is not evident on the mock-up or the various artwork, although this was a common addition for aircraft of the era."
XF-91.
https://en.wikipedia.org/wiki/Republic_XF-91_Thunderceptor
"Another design change was the ability to vary the angle of incidence of the wing as a whole, tilting it up for low speed operations during takeoff and landing, and then "leveling it off" for high-speed flight and cruise. This allowed the fuselage to remain closer to level while landing, greatly improving visibility."