...announcing Rapid Motor Adaptation (RMA)....
Until now, legged robots have either been fully hand-coded for the environments they will inhabit or taught to navigate their environments through a combination of hand-coding and learning techniques. RMA is the first entirely learning-based system to enable a legged robot to adapt to its environment from scratch by exploring and interacting with the world.
Our tests demonstrate that an RMA-enabled robot outperforms alternative systems when walking over different surfaces, slopes, and obstacles, and when given different payloads to carry. This requires going beyond even sophisticated hand-coding, because it is difficult or impossible to preprogram a robot to adjust to the full range of real-world conditions, whether it’s a different type of rug, a deeper mud puddle, or a bouncier trampoline. Moreover, to work reliably, robots must be able to adjust not only to carrying different loads but also to expected wear and tear, like a dent on the bottom of its foot, a slightly worn-down part, or the countless other unpredictable changes that happen in the real world. Because its ability is based entirely on what it encounters, an RMA-enabled robot can adjust to situations programmers never even considered.
We are now sharing our work, including implementation details and experimental results, in this paper.